

Computational Understanding of Image Memorability

Zoya Bylinskii

Computer Science and Artificial Intelligence Laboratory, MIT

zoya@mit.edu

What is memorability?

- objective and quantifiable measure of images
- consistent across observers
- filter for visual data

 $\mathrm{HR}(\mathrm{I}) = \frac{\mathrm{hits}(\mathrm{I})}{\mathrm{hits}(\mathrm{I}) + \mathrm{misses}(\mathrm{I})} \times 100\%$

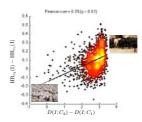
Crowd-sourced (AMT) memory (image recognition) games

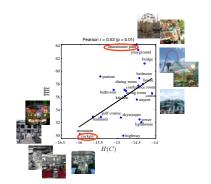
Is memorability predictable?


FIGRIM Dataset

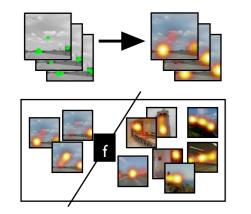


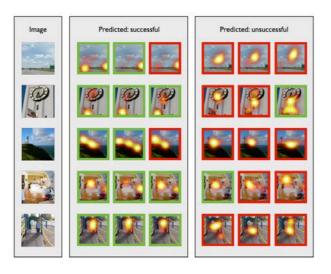
Memorability rank is consistent across participants


Can we model image context?

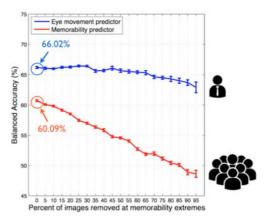

Contextually distinct images are more memorable

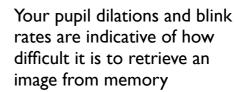
Memorable Memorable within categories across categories

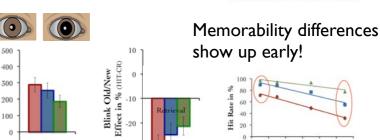

More varied image contexts are more memorable overall



 $H(C) = \mathbb{E}_c[-\log P_c(f_i)]$


Can we use eye behavior to make predictions for individuals?


We train a classifier to predict whether a set of eye movements will lead to a successful encoding



Where you look in an image is predictive of whether you'll remember it later

