Feedforward theories of visual cortex predict human performance in a rapid categorization task

Animal vs. non-animal categorization task

1 High accuracy of primates in ultra-rapid object categorization (Thorpe et al, 1996) and rapid serial visual processing (Potter, 1975) unmatched by
best machine vision systems. Assessing human performance Assessing model performance

~ Evidences suggest feedforward processing for "immediate recognition". Yet so far no biologically plausible feedforward model of visual cortex
shown to perform at human level. Underlying computational mechanisms still debated.

Stimulus (20 ms) Random splits procedure (n=20)
% We show that a specific implementation (Riesenhuber & Poggio, 1999; Serre et al, 2005) of a class of feedforward theories of object recognition 1SI (30 ms)
can predict the level and the pattern of performance achieved by humans on a rapid animal vs. non-animal categorization task. Mask (80 ms) . g
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The model predicts the level of performance of human observers
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crocodile head : 96.90 panda : 94.20 emu:90.40  metronome : 96.90  lobster : 90.80 overall corr. = 0.71, 0.84, 0.71 and 0.60 for heads, close-

0 body, medium-body and far-body respectively, p < 0.01

Head Close- Medium- Far-

ks
ﬁ body  body  body

saxophone : 95.50 snoopy : 94.20  brontosaurus : 95.70 camera:91.20  headphone : 96.70

} .‘;g = O Agreement on (in-plane) rotated images For longer SOAs... back-

O simple cells
omplex cells

— Tuning — Main routes
- MAX  — Bypass routes

Performance (d')

Model predicts, at the C1 and C2 levels respectively, the max-like
behavior of a subclass of complex cells in V1 (Lampl et al, 2004) and
V4 (Gawne & Martin, 2004).

Model agrees with other data in V4 (Reynolds et
al, 1999) about the response of neurons to
combinations of simple two-bar stimuli (within
the receptive field of the S2 units) and some of
the C2 units show a tuning for boundary

projections active?
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Read-out from C2b units in the model predicts recent read-out . . 24 — 10° _
experiments in IT (Hung et al, 2005), showing very similar selectivity 24 Z 80
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