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The relationship between image features and scene structure is central to the study of human visual perception and
computer vision, but many of the specifics of real-world layout perception remain unknown. We do not know which image
features are relevant to perceiving layout properties, or whether those features provide the same information for every type
of image. Furthermore, we do not know the spatial resolutions required for perceiving different properties. This paper
describes an experiment and a computational model that provides new insights on these issues. Humans perceive the
global spatial layout properties such as dominant depth, openness, and perspective, from a single image. This work
describes an algorithm that reliably predicts human layout judgments. This model’s predictions are general, not specific to
the observers it trained on. Analysis reveals that the optimal spatial resolutions for determining layout vary with the content
of the space and the property being estimated. Openness is best estimated at high resolution, depth is best estimated at
medium resolution, and perspective is best estimated at low resolution. Given the reliability and simplicity of estimating the
global layout of real-world environments, this model could help resolve perceptual ambiguities encountered by more
detailed scene reconstruction schemas.
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Introduction

Understanding the visual cues and computations under-
lying the perception of complex environments is a primary
concern of the study of human visual perception. Humans
constantly engage in automatic and rapid analysis of scene
structure when navigating an environment or searching for
objects. Research in human perception has shown that
many global properties of a scene are discerned at an early
stage of visual processing (e.g. coarse spatial layout,
Schyns & Oliva, 1994; naturalness, Joubert, Rousselet,
Fize, & Fabre-Thorpe, 2007; navigability, Greene &
Oliva, 2009a; complexity, Sanocki & Sulman, 2009), and
that brief exposure to a specific scene layout facilitates
distance perception (Sanocki, 2003; Sanocki & Epstein,
1997). Recent work has also shown that global properties
describing the three-dimensional layout of a scene, such
as the dominant depth, openness, or perspective of an
environment, can be perceived at the very beginning of a
glance, and can influence scene categorization (Greene &
Oliva, 2009a, 2009b).
Similarly, computational research in scene recognition

has succeeded in developing algorithms for semantic
scene classification that rely on low-level image features
and not on explicit object recognition or segmentation
(Fei-Fei & Perona, 2005; Oliva & Torralba, 2001, 2002,

2006; Renninger & Malik, 2004; Torralba & Oliva, 2002,
2003; Vailaya, Jain, & Zhang, 1998; Vogel & Schiele,
2007). Many semantic scene categories, such as street,
desert, or forest are partially defined by their spatial
layout. However, many of the specifics of layout percep-
tion remain unknown, including: which image features are
relevant to different layout properties, whether those
features are universal or contextual, and what spatial
resolution is necessary for the perception of different
properties. This paper describes an experiment and a
computational model that provide significant new insights
on all of these issues.
The determination of scene layout information from a

single image has received a great deal of attention over
the past 30 years in both computer vision and human
psychophysics. Many of the computational methods for
recovering layout from non-artificial images focus on
relative depth information: shape from shading (Horn &
Brooks, 1989); texture gradients (Super & Bovik, 1995);
edges and junctions (Barrow & Tenenbaum, 1981), as
well as other pictorial cues such as occlusion, relative
size, and elevation with respect to the horizon line (for a
review, Palmer, 1999). A supplementary source of layout
information can be recovered by detecting vanishing
pointsVthe apparent intersection of parallel lines pro-
duced by perspective projection (Criminisi, Reid, &
Zisserman, 2000; Magee & Aggarwal, 1984). More
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recently, Divvala, Efros, and Hebert (2008), Hoeim, Efros,
and Hebert (2007), Saxena, Sun, and Ng (2009), and Yu,
Zhang, and Malik (2008) attempt to infer similar 3D
models of scene surfaces by using image segmentation to
extract regions that are large enough to provide useful
texture, color, perspective or shape cues. The goal of these
methods is to characterize the variability of depth across
different image locations. The algorithms provide varying
degrees of precision, but at the maximum (Horn &
Brooks, 1989; Saxena et al., 2009) they create a dense
depth map from a single photograph. Unfortunately, no
known method is general enough to provide accurate
scene information regardless of scene content, camera
position, or lighting condition.
Human layout perception is partially due to inter-ocular

stereo fusion, but those cues are only effectual at short
range and humans easily perceive depth when they are
absentVsuch as when looking at photographs. One
hypothesis is that layout perception results from a
combination of local cues extracted from parts of a two-
dimensional image and then resolved into a consistent
overall three-dimensional scene structure. Occlusion and
relative position of features with respect to the ground
plane permit the segmentation of images into “figure” and
“background” regions. Blur information can convey the
coarse layout of the scene (Schyns & Oliva, 1994), which,
in turn, provides information about the probable location
of the surface in depth, and even the size of the observed
space (Held & Banks, 2008). Many researchers have
observed that human-perceived layout and depth informa-
tion is not always accurate (Howe & Purves, 2005; Watt,
Akeley, Ernst, & Banks, 2005). Surface angles are often
underestimated (Girshick, Burge, Erlikhman, & Banks,
2008), and slants of hills are often overestimated (Creem-
Regehr, Gooch, Sahm, & Thompson, 2004; Proffitt,
Bhalla, Gossweiler, & Midgett, 1995). Distances to
objects can be misperceived when a relatively wide
expense of the ground surface is not visible (Wu, Ooi, &
He, 2004), or when the field of view is too narrow
(Fortenbaugh, Hicks, Hao, & Turano, 2007). Although
most studies found systematic and consistent biases in
how humans estimate object distances and surface
orientations, a systematic evaluation of humans’ consis-
tency in perceiving scene layout is missing from the
literature.
A complementary approach, which we adopt in the

current work, is to ignore local variations within an image
and instead characterize an environment’s global layout
properties. For example, instead of detecting that the
ground plane at the bottom of an image is near, while the
mountain at the top of that image is distant, these methods
would reveal that most of the scene elements in this image
are distant compared to those in a close-up image of a
flower. They could also reveal that one street scene is
parallel to the camera, while another is perpendicular, and
that the view from a mountaintop is open to the sky, while

a forest environment is closed. This type of categorization
can be based on the statistical regularities of features and
their spatial distribution within environments of similar
physical size and shape (Oliva & Torralba, 2001; Torralba
& Oliva, 2002, 2003). In fact, three-dimensional spatial
and content properties of scenes, like the degree of
openness, perspective, roughness, or naturalness of an
environment, are indicated by corresponding low-level
information in a two-dimensional image (e.g., a coast is an
“open” environment, characterized by a long horizon line
in the middle of the image).
In natural images, surfaces with convex contours are

statistically more likely to be nearer to the viewer than
those with concave contours (Burge, Fowlkes, & Banks,
submitted for publication), and even simple luminance
and edge information can be very informative of the
overall scene roughness and of the object distances (Yang
& Purves, 2003). A variety of image-based cues are
correlated with the scale of visual environments and, as
scale increases, observer viewpoint is more constrained
(Coughlan & Yuille, 1999). Similarly, the building blocks
of an environment differ from one scale to another given
the functional constraints (e.g. a closet is for small objects,
a garage is for large objects), as do the physical processes
that shape the space at each scale, particularly for outdoor
natural environments. Torralba and Oliva (2002, 2003)
showed that visual features of natural images are strongly
scale-dependent, which allows a simple model based on
the output magnitudes of a bank of localized multiscale
oriented filters to determine the absolute depth range of a
given scene image. The types of components and
materials in a scene (the content of the space) can also
influence the relationships between image features and
scene layouts. For example, Torralba and Oliva (2002)
found that the diagnostic features of scale were strik-
ingly different between man-made and natural environ-
ments. While man-made scene surfaces become smaller
and more heterogeneous with increased viewing distance
(i.e. from a door, porch, or building to a city view, the
global roughness of the image features increases),
natural scene surfaces become larger and more homoge-
neous (i.e. natural structures become larger and smoother
and the horizon line becomes more apparent, breaking the
viewed space into distinctive foreground and background
regions).
The optimal spatial resolution for determining various

spatial layout properties is an open question. As shown by
research in visual cognition, the selection of the optimal
feature or best spatial resolution in a given image depends
on the task to be solved (Gosselin & Schyns, 2001; Oliva
& Schyns, 1997; Schyns & Oliva, 1999) and the types of
images. For natural scene images, different regions of the
phase spectra (McCotter, Gosselin, Sowden, & Schyns,
2005), as well as different spectral magnitude signa-
tures (Torralba & Oliva, 2003) are associated with dif-
ferent basic-level semantic categories (such as forests,
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mountains, street), or different image structure properties
(Baddeley, 1997). Similarly, Torralba (2009) found that
the spatial resolution at which exemplars from a scene
category are recognized vary if the scene is an indoor,
outdoor man-made, or outdoor natural scene.
Some tasks and image types are well served by features

that are spatially invariant and encoded without reference
to image location. This is commonly seen in work
involving textures (Heeger & Bergen, 1995; Portilla &
Simoncelli, 2000) and in the case of natural images with
image-spanning homogeneous surfaces (e.g. foliages,
forests, and ground views; Field, 1987) or properties
related to the fractal dimension of the image (e.g.
roughness of an image; Heaps & Handel, 1999; Oliva &
Torralba, 2001; Pentland, 1984). Natural and man-made
environments can be distinguished with high accuracy
using spatially invariant features (Torralba & Oliva, 2002;
Vailaya et al., 1998). However, the components and
surfaces that create the spatial layout of a scene often
vary significantly with image location. For example, open
scenes are characterized by the absence of texture at the
top part of the image, whereas closed scenes are
characterized by the presence of texture across the entire
image. Oliva and Torralba (2001) observed that the
correlation between human ratings of scenes along the
properties of openness and perspective and a linear
discriminant model were higher when the model used a
feature representation based on a 4 � 4 spatial grid
(2 cycles/image) instead of a spatially invariant encoding.
In this paper, we gain insight into the image features

and the spatial resolution that are correlated with the
human perception of the global layout of visual environ-
ments. Instead of trying to construct detailed three-
dimensional scene models or to recover “ground truth”
information about the specific locations of objects and
surfaces, we focus on recovering global scene layout
properties that correspond to dimensions of interest for
human perception. Humans can easily group collections of
scenes into categories that, although semantically differ-
ent, share similar dominant depth, openness, perspective,
and other properties. The model developed in this paper
can successfully translate an image into co-ordinates in
the space of perceptual physical scene layout.
The approach presented here differs from previous work

in several ways: most notably, it focuses on estimating
perceptual ground truth rather than physical ground truth
and it investigates the spatial resolution at which image
features best represent layout information. By training and
testing the model on a large database of human scene
layout ratings, we determine the types of image informa-
tion that best predict the depth, openness, and perspective
of a given scene. The results demonstrate that the model
replicates a substantial portion of the relationship between
image features and human perception. Furthermore, its
predictions are general and not specific to the observers it
was trained on. Analyzing the model reveals that openness

is best estimated at a high spatial resolution, dominant
depth is best estimated at a medium spatial resolution, and
perspective is best estimated at a low spatial resolution. In
many cases, the model’s performance is not significantly
different from human performance, therefore analyzing its
structure and behavior may provide insights for under-
standing human layout perception or designing new experi-
ments. Not only are these results valuable to furthering our
understanding of human scene layout perception, they are
relevant to a rich set of computer vision applications,
especially in image search and visual navigation.

Human rating experiment

Our goal was to gather human ratings of the dominant
depth, openness, and perspective of a large, diverse
collection of outdoor images. This database was used to
train and test computational models for automatically
determining these properties. In order to gather the
perceptual ground truth on the three properties, we
conducted an experiment in which human observers rated
the dominant depth, perspective, and openness of thou-
sands of unique images of natural and human-made
outdoor environments (see Figure 1).
While depth is often considered a local property of a

given surface, here we refer to depth in a global sense,
thereby referencing the size of the space in a scene (e.g.
the mean distance between the observer and the bounda-
ries of this space, e.g. Torralba & Oliva, 2002). While
dominant depth is not a precisely defined quantity, it has a
strong relationship with the physical size of the space, and
human judgments are consistent in evaluating this quan-
tity (Torralba & Oliva, 2002).
Openness of a scene refers to the quantity and location

of boundary elements of the scene in view. The most open
scene is a ground surface stretching to the horizon, with
the existence of a horizon line in the absence of any other
visual references (e.g. trees, buildings, Gibson, 1986). At
the other extreme, a closed scene is composed of surfaces
covering the full field of view.
Perspective refers to the degree of expansion of a space.

The convergence of parallel lines to a visible vanishing
point gives a strong perception of depth gradient to the
space represented in an image. However, a flat view on a
row of trees, a background mountain, or a building would
have no perspective because the scene lacks salient
parallel lines or the vanishing point is perpendicular to
the camera’s direction (a situation also denoted as a
vanishing point “at infinity”). Using different sets of
images and tasks, previous work has shown that these
three properties can be reliably estimated by human
observers (Greene & Oliva, 2009b; Oliva & Torralba,
2001; Torralba & Oliva, 2002).
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Figure 1. Top: an example display from one trial of the experiment. The sliders are used to indicate the rating of the target image at the top;
the “?” buttons are used to indicate an ambiguous layout. Bottom: a similar example display, but with the urban layout prototypes
displayed.
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Stimuli

A total of 7,138 unique grayscale images of outdoor
scenes, representing a variety of outdoor environments,
were used. The images were selected from the database
used in Oliva and Torralba (2001) and from a larger
database containing approximately 40,000 images of
outdoor environments collected from a variety of sources,
including personal photographs, various Internet search
engines, and photography websites. The examples in the
Oliva and Torralba (2001) database were originally
selected to be prototypical examples of spatial envelope
axes. The examples selected from the larger database were
chosen at random, but images that did not represent
outdoor scenes or were not photographed from a standing
position were manually excluded.

Participants

Fourteen participants from the MIT community and
others took part in the rating experiment. All participants
were between 18 to 40 years old. They all gave informed
consent and received monetary compensation of /20/hour.
Each observer rated between 300 and 1,300 images. Both
authors participated in the experiment, and rated 1,026
and 850 trials respectively. In total, 7,138 unique images
were rated by a human observer, and these ratings were
used to train and test the models presented in this paper. It
would be unreasonable to expect a computer algorithm to
predict human ratings better than another human can.
Therefore, human rating consistency is a useful perfor-
mance benchmark. To measure consistency, 838 of the
images were rated a second time (in all but 15 cases, the
second rating was provided by a different observer than
the first rating). The double-rated images were a random
subset of the complete set of images.

Procedure

For each image, each of the three properties was rated
on a continuous 1–6 scale and observers were provided
with prototypical images for the integer values. Figure 1
shows computer displays from two representative trials:
participants were shown one target image representing a
view of a standing observer on the ground, and asked to rate
its degree of perspective, openness and dominant depth on a
scale from 1 to 6, as if they were at the scene and observing
it from the specific viewpoint represented by the image. We
instructed participants to judge the overall dominant depth
based on the average depth of the scene across image pixels
representing objects or landforms, excluding the depth
associated with pixels representing the sky, clouds, or sun
(“1” represented near and “6” represented far). We
instructed them to judge perspective by estimating the
angle between the camera and the perceptually dominant

vanishing points in the image, ignoring if the angle was to
the left or to the right (“1” represented perpendicular and
“6” represented parallel). We instructed them to judge
openness by the amount of unobstructed sky in the image
and the location of the horizon line (“1” represented open
and “6” represented closed).
At the beginning of each trial, observers were shown

one randomly selected target image, were asked to
provide a one or two-word description of the image
(typically, its semantic category), and were required to
select if the image was “natural” (primarily consisting of
natural objects) or “urban” (primarily consisting of
manufactured objects). Each layout rating was represented
by a slider bar and a numeric indication of the current
rating. At the beginning of each trial, all sliders were set
to the middle position, representing rating “3.5” for each
property. Above each property slider were a set of six
prototype images representing examples of the type of
layout associated with the 6 possible integer rating values.
There were “natural” and “urban” sets of prototype
images and the appropriate set was displayed based on
the observer’s classification of the target image. Observers
were instructed to choose the ratings by sliding the bars to
positions that best described the layout properties of the
target image. Ratings were recorded as real-valued
numbers and observers were free to choose a slider
position between two prototypes if they felt that position
best represented the image layout. Observers were
instructed to choose the rating that best characterized the
dominant layout of the scene. For example, a target image
might contain objects at a variety of depths, but if the vast
majority of pixels are associated with distant objects, they
should control the depth rating. The observers were told
they could skip rating of a property for a given image if
they felt it was ambiguous. The interface provided a “?”
button next to each property slider for that purpose.
As described previously, approximately 12% of the

images were rated twice and these were used as a
performance baseline to compare our model’s error rate
to human perceptual variability. An appropriate computer
model of perceptual spatial layout should achieve a rating
prediction error similar to the expected rating variance
between two human observers. The inter-observer var-
iance indicates the precision of the perceptual ground
truth. A model with lower error is probably over-fitting
the data: It is providing information about a specific
human rater or a specific type of image, rather than
computing generally useful information.

Modeling spatial layout

Oliva and Torralba (2001) have shown that a mean-
ingful scene categorization of outdoor environments can
be made in a feature space consisting of the local responses
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to frequency-tuned filters of different scales and orienta-
tions. In the computer vision literature, this feature space is
referred as the GIST descriptor. Previous work by Torralba
and Oliva (2002) demonstrated that the GIST features
could be used to estimate physical depth of natural images
using cluster-weighted models (CWMs) (Gershenfeld,
1999). CWMs are a generalization of Gaussian mixture
models to linear regression. This work applies CWMs to
predicting the perceptual dominant depth, openness, and
perspective of real world scene images.

GIST features: A low-dimensional
representation of image structure

To compute the GIST features, we used the MATLAB
code used in Oliva and Torralba (2001).1 This algorithm
transforms a grayscale image into a collection of feature
images by convolving it with a set of Gabor-like filters.
The filtered images are each divided into an R by R grid
and then summarized by the average complex magnitudes
in each grid square. Full details about the GIST features
are available in Oliva and Torralba (2001). This repre-
sentation provides strong information about the structure
of the scene, but not about specific objects. For the work
presented in this paper, we used GIST features computed
from Gabor filters with 8 orientations at 4 scales.
The optimal spatial resolution (the size of R) for

estimating each layout property is an open question. Most
GIST-based algorithms and analyses have used a reso-
lution of 4 � 4 (or 2 cycles/image). The utility of a finer
representation of spatial information in layout perception
can be tested by using higher resolutions which represent
the average filter responses in more localized image
regions. In this work, we varied the grid size (R = 1, 2,
4, 8, 16) to determine the optimal spatial resolution for
estimating the perceptual dominant depth, openness, and
perspective of outdoor scene images.

Learning algorithm: Cluster-weighted models
of scene layout properties

The model introduced in this section is designed to
learn the relationship between the image structures
(defined by the GIST feature at various resolutions) and
the three layout properties. For instance, for dominant
depth, the system has to learn that, in the case of a natural
environment, long horizontal and oblique contours prob-
ably correspond to a large-scale environment, whereas the
presence of fine-grained texture all over the image
probably indicates a medium-sized environment. We want
to determine depth, openness, and perspective estimators
which can predict human perceptual judgment of these
properties on real-world outdoor images.
Regression is the prediction of one variable’s value

from the known values of other variables. There are a

wide variety of regression models in the scientific
literature. In a standard linear regression model, the
property of interest is computed with a weighted sum of
feature values. For example, a linear regression model of
depth might consist of positive weights on high frequency
features and negative weights on low frequency features.
This model would predict that images containing an
abundance of high frequencies are far and images
containing an abundance of low frequencies are near.
Linear models are valuable because they are simple to fit
to data and efficient to compute, but they do not always
provide the most accurate results. For example, what if
high frequencies are associated with deep city scenes, but
shallow forest scenes? This type of context-dependent
prediction cannot be described by a single linear regres-
sion function, but it could be described by fitting separate
regression functions to each scene category. CWMs can
be trained to automatically find the regression functions
appropriate for each context and achieve more accurate
results than simple linear models.
A CWM contains N clusters in a feature space and each

cluster is associated with a linear regression function.
Regression is performed on a new example by a mixture
of all the model’s regression functions. The mixture pro-
portions are determined by the CWM’s mixture coefficients
and the conditional probability of the example’s features
under the Gaussian distribution representing each cluster ci.
Therefore, the joint probability density of a scene property
rating, rj, and the image feature vector, fj, is:

pðrj; fjÞò
XN
i¼1

pðciÞpð f jkciÞpðrjk f j; ciÞ; ð1Þ

in which

p fjkci
� �

ò exp j
ð f jj2iÞT

Xj1

i
ð f jj2iÞ

2

0
@

1
A; ð2Þ

and

p rjk fj; ci
� �

ò exp j
ðrjj5T

i fj*Þ2
2A2

i

 !
; ð3Þ

where fj* indicates the original feature vector fj with a 1
concatenated to its end. Given an image’s features, fj, the
estimated rating that minimizes expected squared error
under the model is

r̂j ¼
XN

i¼1
5T
i fj*pð f jkciÞpðciÞXN

i¼1
pð f jkciÞpðciÞ

: ð4Þ
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Given N, the model can be fit to D data samples by
choosing random initial parameter values and using
the following expectation-maximization (EM) update
equations:

p cikrj; fj
� � ¼ pðciÞpð f jkciÞpðrjk f j; ciÞXN

i¼1
pðciÞpð f jkciÞpðrjk f j; ciÞ

; ð5Þ

pðciÞV¼
XD

j¼1
pðcikrj; fjÞXN

i¼1

XD

j¼1
pðcikrj; fjÞ

; ð6Þ

2iV¼
XD

j¼1
f jpðcikrj; fjÞXD

j¼1
pðcikrj; fjÞ

K fh ii; ð7Þ

X
i
V ¼ ð f j 2iVÞð f j 2iVÞT

D E
i
; ð8Þ

5iV ¼ f *f *T
� �

i

� �j1

rfh ii; ð9Þ

A02
i ¼ ðrj5T

i f *Þ2
D E

i
; ð10Þ

where the bÀi expectation operation is defined as in the 2iV
update equation. For further details and derivations read
Gershenfeld (1999).
For the results reported in this paper, we initialized p(ci)

to a uniform distribution, and the �i and Ai
2 parameters

with the variances of the features and ratings, respectively.
The 2i were initialized to the values of N randomly chosen
fj vectors from the training data, and the Ai were
initialized to all zeros, except for the last (bias) term
which was set to predict the rating associated with the
initial 2i. To find the best model for a given N and avoid
local minima we re-ran the EM procedure 20 times and
chose the result with the maximum log likelihood. The
best N was chosen by five-fold cross validation on the

training data, searching from 1 to 10 clusters and selecting
the N that produced the minimum total mean-squared
error on the held-out segments.

Determining the optimal spatial
resolutions

We fit CWM models to the human experimental data
for three purposes: to determine the optimal spatial
resolution for predicting each spatial layout property, to
compare the CWM models’ performance to human
performance, and to determine if the models’ predictions
would generalize to new observers who were not included
in the training data.
For the purpose of determining the optimal spatial

resolutions, the 7,138 images were randomly divided into
five non-overlapping sets. The duplicate ratings were
discarded, so each data point consisted of a unique image
and at most one rating for each scene layout category.
Five-way cross validation was performed with each set
held out as test data in turn.2

For each cross-validation split, CWMs were fit to the
data in four of the sets and tested on the held-out images
in the remaining set. Each layout property was predicted
by an independently trained model. Because the division
between natural and urban environments is a primary axis
of image categorization (Rogowitz, Frese, Smith, Bouman,
& Kalin, 1998) and can be automatically determined, the
models were trained and tested on three different versions
of the dataVone that contained all the images, one that
only contained the natural images and one that only
contained the urban images.3 Approximately 55% of the
training and test data sets consisted of natural images. If
human observers did not rate one or more layout proper-
ties of a particular image, it was excluded from the test
and training sets for only that property.
In training, CWMswere fit using five spatial resolutions of

the GIST features: 1 � 1, 2 � 2, 4 � 4, 8 � 8, and 16� 16.
For each resolution we used the same 8 orientations and
4 scales of Gabor filters. Principal components analysis
(PCA) was used to reduce each type of feature to 24
dimensions. The principal components were computed
from 2,000 images that were not used in any training or
testing sets. The number of components was chosen based
on Torralba and Oliva’s (2002) previous experiments with
depth estimation using GIST features.4 Keeping the
number of components fixed as the spatial resolution
increased helps to avoid the potential need for exponen-
tially more training data at each step due to the increase in
feature dimensionality.5 While our 1 � 1 GIST represen-
tation only has 32 dimensions, 2 � 2 has 128 dimensions,
4 � 4 has 512 dimensions, 8 � 8 has 2,048 dimensions,
and 16 � 16 has 8,192 dimensions. Using a constant
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number of features helps to ensure that the model
generalizes well using the same number of training
examples across all resolutions. However, it also means
that increasing the spatial resolution available to the
model decreases the available frequency information.
Therefore, instead of viewing the increasing spatial
resolution as providing strictly more information to the
CWMs, it is useful to consider it as a control balancing the
amount of frequency information versus the amount of
spatial information. The 24 dimensions used to represent
the 1 � 1 features contain only frequency information
about the images, and as the resolution increases some of
that information is displaced by spatial information.
The training procedure described in the previous section

lead to one CWM for each combination of feature type,
layout property, and data set, using only the training data.
After training was complete, the models were evaluated
on the held-out data to determine which spatial resolution
was best suited for predicting each property on each data
set.
The cross-validation provides several quantities of

interest. First of all, for the remaining experiments that
are concerned with measuring the performance of the
CWMs for this task, we wish to know which resolution
provides the best performance for each estimation prob-
lem. To compute the optimal resolutions, we compute the
mean squared errors observed for each resolution across
all the training/testing splits. We wish to determine the
minimum resolution required to produce optimal results
for each property. Those resolutions, reported in Table 1,
were computed for each property and data set by looking
at the mean squared errors recorded for each resolution
and using paired one-sided t-tests (p G 0.05) to determine
if they were significantly better than the errors produced
by the models trained at all lower resolutions.6 For
example, we would declare a 4 � 4 model optimal if its
performance was significantly better than the 1 � 1 and
2 � 2 models’ performances and it was not significantly
outperformed by the 8 � 8 or 16 � 16 models. For more
detail about optimal resolutions, please see Appendix A.
It is also interesting to compute the average number of
clusters used in each model at the optimal resolutions
(Table 2) because it reveals how much context-sensitivity
(compared to a linear regression function, which is
equivalent to a one-cluster CWM) is necessary to
optimally compute each layout property.

Results and discussion

The performance data reveals that the optimal spatial
resolution is different for the three layout properties and
also depends on whether the image depicts a natural or
urban environment.7 For urban environments, the three
layout properties share the same optimal resolution, 4 � 4
(i.e. 2 cycles/image). On the other hand, for natural
environments, estimating the dominant depth requires the
most spatial resolution (8 � 8), perspective requires the
least (2 � 2), and openness falls somewhere in between
(4 � 4). Overall, estimating perspective requires the least
spatial resolution because perspective is only salient
when there are lines stretching across an entire image to
indicate the location of vanishing points. It is difficult to
gather meaningful data about perspective from a small
image patch and it depends more on orientation than
location. Openness, on the other hand, is dependent on
the location of sky-boundary patches and the location of
the horizon line, and depth, especially in complex scenes
composed of near objects and distant backgrounds, can
depend on a mix of high and low-spatial-resolution cues.
Although the trends in the number of clusters used by

the models (Table 2) are less clear, depth and openness
estimation appear to generally require more clusters than
perspective estimation. This could indicate that perspec-
tive regression functions are more generic, or it could be a
consequence of the lower precision of perspective per-
ception, which is discussed in the next section.

Comparison to human variance and Mean
Model predictions

To measure the quality of the CWM predictions, we
compared the accuracy of its predictions to the predictions
of three other models: the ratings of another human
observer on the same test images, the ratings of the Mean
Model (MM), and the ratings of a Linear Model (LM).
Figure 2 demonstrates these comparisons using real data
on an example image. All error measurements are
represented by the squared difference between the model’s
rating and the rating provided by a human observer.
Squared error is the most commonly used error measure-
ment in regression problems.

All Natural Urban

Depth 4 � 4 8 � 8 4 � 4
Openness 8 � 8 4 � 4 4 � 4
Perspective 2 � 2 2 � 2 4 � 4

Table 1. The optimal spatial resolutions for computing each layout
property with CWMs. Across the five-fold cross validation, each of
these models performed significantly better than the CWMs at all
lower resolutions (one-sided t-test, p G 0.05).

All Natural Urban

Depth 6.2 3.0 4.6
Openness 6.2 4.6 3.4
Perspective 4.0 1.2 3.4

Table 2. The mean number of clusters used in the optimal
resolution CWMsVaverages computed across the five-fold
cross-validation procedure.
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The choice of these performance comparisons is
significant. First, we wish to demonstrate that the CWM
model is making use of the information in the image. The
MM has the minimum expected squared error for any
model that ignores the image, therefore it is an appro-
priate lower bound for CWM performanceVany improve-
ment over its accuracy is due to the CWM capturing useful
perceptual information from the images. Comparison to
the LM, which is equivalent to a CWM using only one
cluster, is significant because it indicates how much of the
CWM’s performance is due to its context-sensitivity (e.g.
if the image is a forest or a city). The CWM automatically

implements context sensitivity by clustering images and
assigning different regression functions to each cluster.
If this provides an important boost to performance, we
would expect the CWM squared errors to be signifi-
cantly smaller than the LM squared errors, which result
from using a single linear regression function in all
circumstances.
Finally, we need to know a reasonable upper bound for

CWM performance. For some properties of some images,
multiple human observers will have extremely similar
ratings. For example, in Figure 2, both human observers
rated the image as nearly completely closed. In these

Figure 2. An example of a natural target image and the ratings provided by the original human observer, a second human observer, the
CWMs (cluster-weighted models), and the MMs (mean models). Bracketed values are the squared errors between each rating and the
original human rating. Color is only used for visualizationVall experiments and computer programs used grayscale images.
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cases, we would expect a good CWM for openness to
achieve a squared error of nearly 0 between its prediction
and a human observer’s prediction. At the other extreme,
perspective is difficult to judge in many natural images
because different observers attend to different orientations
and vanishing points. In Figure 2, one human rated the
image as nearly parallel, while the other attended to other
elements and rated it as nearly perpendicular. In this case,
even a good CWM might produce a rating substantially
different than the human’s rating on that sceneVit is not a
bad model, but simply reflecting that the stimulus is
ambiguous. Therefore, when judging CWM performance,
it is useful to have a test set where we know how
consistently multiple human observers would rate each
property of each image. One way to facilitate this is to
collect a second set of human ratings on the test images.
Then, for each image, we can compare the squared error
between the CWM prediction and the original human
prediction and the squared error between the original
human prediction and the second human prediction. If the
two humans are in close agreement, a good CWM model
should have low squared error. If the two humans disagree
substantially, a good CWM model might have high
squared error due to the ambiguity of the stimulus.
In order to compare the human, CWM, LM, and MM

performances on the same set of images, the test set was
specified to be the set of images with two human ratings.
These double-rated images were randomly selected to be a
representative sample of the entire image database. On
each double-rated image, one rating was treated as the
“true” perception and the other used as the human “model”
perception. This resulted in a set of 6300 training and
838 test images. In all but 15 cases the duplicate ratings
were from two different observers. Using the results from
the optimal resolution analysis (Table 1), the CWMs were
trained on 4 � 4 GIST features for depth, 8 � 8 GIST
features for openness, and 2 � 2 GIST features for

perspective, with the number of clusters chosen via cross-
validation on the training data as described previously.
Table 3 reports the mean squared errors (and their

standard errors) of the human, CWM, LM, and MM
perceptual ratings on the test images. To gain an intuition
of how the magnitude of squared errors corresponds to
differences in rating, look at Figure 2. Note that squared
error penalizes large rating differences much more than
small ones. Overall humans were most consistent at
estimating dominant depth, somewhat less consistent at
estimating openness, and least consistent at estimating
perspective. The estimation of perspective in natural scene
images was particularly difficult for observers, with an
inter-observer mean squared error of 2.15, close to the
mean squared error of the MM. On the other hand,
observers were very accurate in estimating the dominant
depth of both natural and urban scenes, as found
previously by Torralba and Oliva (2002).
The CWM models’ squared errors were significantly

smaller than those produced by the MM models in every
condition according to the one-sided Wilcoxon sign-rank
test (p G 0.01, N = 729–837 (all), N = 358–455 (natural),
N = 367–382 (urban)). The human ratings had signifi-
cantly smaller squared errors than the CWM model on all
perspective ratings and openness ratings for natural scenes
(p G 0.01, N = 358–729 (perspective), N = 455 (open-
ness)). On the other hand, human ratings did not
significantly outperform CWM for depth on all images
and natural images. In addition, humans only marginally
outperformed CWM for depth on urban images (p = 0.05,
N = 367). Human and CWM accuracy at judging the
openness of urban scenes were relatively similar (human
ratings were more accurate with p G 0.02, N = 382).
Therefore, it seems likely that the CWM model matches
humans’ global scene depth perception on this database.
Even in the other two categories, at least 90% of the
CWM ratings’ squared errors were within two standard

Depth 4 � 4 Human CWM LM MM

All 0.46 (0.03) 0.56 (0.04) 0.61 (0.04) 0.94 (0.05)
Natural 0.55 (0.04) 0.64 (0.06) 0.66 (0.05) 1.10 (0.08)
Urban 0.36 (0.03) 0.42 (0.03) 0.44 (0.04) 0.71 (0.05)

Openness 8 � 8 Human CWM LM MM

All 0.71 (0.05) 0.87 (0.06) 1.08 (0.06) 2.84 (0.10)
Natural 0.68 (0.07) 0.93 (0.08) 1.10 (0.09) 2.97 (0.13)
Urban 0.74 (0.08) 0.75 (0.08) 0.88 (0.07) 2.65 (0.15)

Perspective 2 � 2 Human CWM LM MM

All 1.80 (0.16) 1.95 (0.10) 2.00 (0.10) 2.61 (0.11)
Natural 2.15 (0.26) 2.10 (0.18) 2.09 (0.18) 2.29 (0.18)
Urban 1.49 (0.18) 1.57 (0.12) 1.69 (0.13) 2.65 (0.12)

Table 3. Mean squared errors for humans, CWM, LM, and MM (with standard errors of the means). CWM is significantly better than MM in
all cases (one-sided Wilcoxon sign-rank test p G 0.01). Bold human mean squared errors were not significantly less than their CWM
counterparts (p G 0.01). Bold LM mean squared errors were not significantly greater than their CWM counterparts (p G 0.05).
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deviations of the human squared error distribution, the
equivalent percentage for the MM was as low as 50% (for
openness prediction on natural images).
The CWM performance trends also match the human

performance trends very well. In both cases, depth was the
most accurately predicted property, followed by openness,
with perspective a distant third. This is unsurprising
because in some images, particularly images of natural
scenes, there are multiple or ambiguous vanishing points
and the determination of a dominant perspective becomes
much more subjective, an issue also apparent in the poor
human re-rating performance on this property (see Figure 2
for an example). Human observers skipped rating the
perspective property more frequently than any other (15%
of trials, compared to 5% for depth and 0.5% for
openness). The perspective skip rate was much larger for
natural scenes (23%) than urban scenes (5%), the largest
natural/urban skip rate difference of the three properties
(compared to 6%/4% for depth, 0.5%/0.5% for openness).
In future work, it would be useful to explore the multi-
modal aspects of perspective perception. Running multi-
ple human observers on the ambiguous images and then
finding the modes of the p(rjj fj) function might provide
new insights.
Depth and perspective were more accurately predicted

by humans and computer models on urban scenes than on
natural scenes. Humans were almost equally accurate at
rating openness in both contexts, but the CWMs were
more accurate for urban images. These trends reflect the
simpler structure found in urban environments, especially
with respect to perspective, which is strongly defined by
rectilinear features such as buildings and streets.
The CWM provided a significant improvement in

performance compared to the LM for the depth-all
condition and for all openness ratings (p G 0.01, N =
799 (depth), N = 382–837 (openness)). It provided a
significant improvement (p G 0.05, N = 432) for depth-
natural, perspective-all, and perspective-urban, but not for
depth-urban or perspective-natural. Unsurprisingly, per-
spective CWM models tend to use the fewest clusters and,
therefore, exhibit less non-linearity, than models for depth
and openness (see Table 2). Overall, these results indicate
that the non-linear models are significantly better than
linear models at matching human perception, but a
computer vision application concerned with efficiency
can use a linear model without sacrificing too much
accuracy.
Another useful measure of model performance is the R2

statistic, which measures the fraction of variance
accounted for by a regression model (Myers & Well,
2003). Table 4 contains the R2 values for all the computer
models and the human re-ratings described in Table 3.
Notice that although a theoretical maximum of R2 = 1 is
possible, the human re-ratings are always substantially
below that level due to the aforementioned variance in
scene perception between observers. With the exception
of natural scene perspective, human re-ratings have the

highest R2 values, followed by CWM, in turn followed by
LM. The MM R2 statistics are always near zero because
the expected squared error from the mean rating value is
the definition of varianceVtherefore a MM, by definition,
does not account for any rating variance. Table 4 confirms
the previously observed pattern that CWMs are generally
the best computational models for global scene properties.
In R2 terms, humans have the most consistent percep-

tion of openness and CWMs also predict openness very
well, matching human performance on urban environ-
ments. The R2 values for humans and CWMs are
considerably lower for depth. Although depth was the
most accurately measured property in terms of mean
squared error, the R2 values account for the fact that depth
ratings have less variance across images than openness
ratings. The difficulty of predicting natural scene perspec-
tive is highlighted even more strongly in the R2 statistics
than in the squared error statisticsVit is very clear that no
model (not even human re-rating) is accounting for a
substantial amount of the variance. This is compatible
with the previous hypothesis that natural scene perspec-
tive is frequently multi-modal. Variance, the basis of the
R2 statistic, is an inherently unimodal property.
Figures 3, 4, and 5 show the four best and worst results,

measured by squared error, for each property on each test
data set. Note that although the images are displayed in
color for visualization purposes, the experimental observ-
ers and all layout-prediction models operated on their
grayscale versions. Even with this small sample it is clear
that in each category a wide range of images were rated
correctly. The correctly rated images in depth and
perspective cover some difficult cases and points along
those layout spectra (Figures 3 and 5). On this small
sample, the correctly rated openness images seem to
contain many completely closed images (Figure 4). That
end of the openness spectrum is easy to rate consistently,
by assigning the maximum rating to any skyless image.

Depth 4 � 4 Human CWM LM MM

All 0.51 0.41 0.36 0.00
Natural 0.50 0.42 0.40 0.00
Urban 0.50 0.41 0.38 0.00

Openness 8 � 8 Human CWM LM MM

All 0.75 0.69 0.62 0.00
Natural 0.77 0.68 0.63 0.00
Urban 0.72 0.72 0.67 0.00

Perspective 2 � 2 Human CWM LM MM

All 0.31 0.25 0.23 0.00
Natural 0.06 0.08 0.08 0.00
Urban 0.44 0.41 0.36 0.00

Table 4. R2 values measuring the fraction of variance accounted
for by human, CWM, LM, and MM modelsVR2 = 1 indicates
prefect prediction.
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Figure 3. The most and least accurate depth layout predictions made by the CWMs, “h” indicates the human ratings. A rating of “1”
indicates the scene is near and “6” indicates that the scene is far. Color is only used for visualizationVall experiments and computer
programs used grayscale images.
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Figure 4. The most and least accurate openness layout predictions made by the CWMs, “h” indicates the human ratings. A rating of “1”
indicates the scene is open and “6” indicates that the scene is closed. Color is only used for visualizationVall experiments and computer
programs used grayscale images.
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Figure 5. The most and least accurate perspective layout predictions made by the CWMs, “h” indicates the human ratings. A rating of “1”
indicates the scene is perpendicular and “6” indicates that the scene is parallel. Color is only used for visualizationVall experiments and
computer programs used grayscale images.
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Several of the worst results are clearly on outlier
images. For example, the close-up photo of the tree trunk
in the depth examples (Figure 3) is very shallow and
photographed at an unusual angle. Similarly, several
images are from aerial photographs and one is a view of
a balcony corner, two types of images that are not well
represented in the database to begin with. Two of the
worst-scoring urban perspective images appear to be the
result of unusual human rating decisionsVthe CWM rated
two building entrances as approximately parallel while the
human rater ranked them as perpendicular. In both cases
the second human rater on the images choose ratings very
similar to the CWM values. But it would be a mistake to
assign all of the blame for poor performance on test examples
that were dissimilar from most training examplesVa
substantial number of incorrectly rated images are very
close to the model cluster centers and are not obvious
outliers. The most likely path to closing the small gap
between the CWMs and humans lies in improving the
features or incorporating algorithms that provide more
detailed depth maps.

Measurement of cross-observer
generalization

In the previous analyses, most observers appear in both
the training and test data sets. Therefore, it is possible that
the CWMs perform well because they learned to predict the
responses of a particular group of observers and their
performance would be poor if they were compared to the
ratings of a novel observer. To address this concern, we
conducted a new analysis. We constructed thirteen testing
and training splits. In each split, the testing set contained
ratings from only one observer and the training set
contained no ratings from that observer. Therefore, the
CWM has no opportunity to learn an observer-specific
modelVif it performs well, that must be the result of
learning generic properties of scene perception that
generalize to multiple observers.
The results reported in Table 5 compare the average

mean squared error over all the possible selections of
held-out observer splits to (the “holdouts” condition) to
the previously reported mean squared error (the “mixed”

condition). For this analysis we only measured perfor-
mance on all images, not subdividing into natural and
urban conditions. Although the average holdout perfor-
mance was worse than the mixed performance, the mixed
performance level was always within one standard
deviation of the holdout average. We also compared the
performance of CWM and MM across the holdout
conditions and found that for every held-out observer
and for every property, CWM had significantly better
performance than MM (one-sided Wilcoxon sign-rank
test, p G 0.012, N = 276–1266).
Based on these results, we conclude that most of the

CWMs’ performance results from capturing universal
perceptual properties and relatively little is the result of
learning observer-specific models.

Discussion

Because of their success in replicating human percep-
tion, it is interesting to dissect the CWM models to gain
better understanding of the information they represent. In
order to do this, we need to develop a compact visual
representation for the models. Figure 6 depicts the 8 Gabor-
filter orientations that we use to compute the GIST
features. Note that for each orientation there is a pair of
Gabor filters, a sine and cosine pattern of the same
frequency and orientation. Furthermore, these patterns
indicate that the filters are sensitive to image brightness
boundaries that are perpendicular to the filter orientation.
For example, if an image has a strong horizontal
boundary, such as a horizon, the vertically oriented Gabor
filters will have the strongest response to that aspect.
Beneath the filters, Figure 6 shows the responses

produced by convolving each filter with an example
image (the image was converted to grayscale before
filtering). Each response image combines the output from
the sine and cosine versions of the relevant Gabor, so they
capture brightness variations that match the filter’s
frequency and orientation regardless of phase. Bright
pixels indicate a region of the image containing variations
that match that Gabor filter’s frequency and orientation.
Note that, as mentioned above, the vertically oriented
filters are most sensitive to the horizon line in the image.
These filtered images can be summarized by computing
the average of all the response-pixel values, which
indicates the global response of the filter to the image. A
convenient graphical representation of the global filter
responses is to draw lines representing each filter
orientation, setting the length of the line to match the
magnitude of the averaged filter responses. At the bottom-
left of Figure 6 we can see this representation of the
Gabor-filter responses to the sample image. As mentioned
previously, we can increase the spatial resolution of the
GIST representation by subdividing an image into grid

CWM
(mixed)

CWM
(holdouts)

MM
(holdouts)

Depth (4 � 4) 0.56 0.63 (0.16) 1.00 (0.28)
Openness (8 � 8) 0.87 0.91 (0.20) 2.83 (0.40)
Perspective (2 � 2) 1.95 2.06 (0.40) 2.67 (0.34)

Table 5. Comparison of mean squared error between mixed and
single-observer holdout conditions. Average mean squared error
(and standard deviations) for CWM (holdouts) and MM (holdouts)
reported across all observers. CWM (holdout) outperforms MM
(holdout) in all cases (p G 0.012).
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squares and reporting average Gabor-filter responses for
each square. The representations produced by subdividing
this sample image into 2 � 2 and 4 � 4 grids are also
displayed at the bottom of Figure 6.

Figure 7 shows three images that evoke very different
Gabor responses. The close-up forest image primarily
contains tree-trunks, which primarily excite the horizon-
tally oriented Gabor filters. As mentioned before, the

Figure 6. Top: The eight orientations of Gabor filters used on the images, showing the cosine and sine components of each filter. Middle:
The responses produced when convolving an example image (I) with each filter. Bottom: Summarizing the responses by indicating the
average response to each orientation across the whole image (a 1 � 1 grid), and across localized subregions designated by division of the
image into 2 � 2 and 4 � 4 grids. Color is only used for visualizationVall experiments and computer programs used grayscale images.
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beach image is dominated by its horizon and therefore
primarily has vertical Gabor structure. More complex
images, such as the third image, which shows palm trees
along a shoreline, contain a mixture of orientations and
produce a more evenly distributed Gabor output. We can
also see that increasing or decreasing the frequency (and,
therefore, decreasing or increasing the scale, respectively)
of the filters alters the pattern of responses. Some
structures, such as the horizon line of the beach scene,
are most prominent at a particular scale. As mentioned
previously, the GIST representation used in this paper
employs Gabor filters at 4 different scales. Finally, note
that when we increase the spatial resolution to 2 � 2, new
aspects of each image are represented. For example, we can
see that the forest close-up scene is very homogeneous,

while the palm-tree shoreline image contains very little
texture in its upper-left corner.
Figure 8 demonstrates that we can use this same

representation to describe the linear regression functions
computed on these Gabor-filter responses. The oriented
lines represent the same Gabor filters as in Figures 6 and
7, but now the magnitudes represent coefficients that we
will apply to the summed responses to those filters. The
magnitude of each coefficient is indicated by length and
color indicates whether the coefficient is positive (blue) or
negative (red). This visual representation can be extended
to 2 � 2, 4 � 4, or 8 � 8 Gabor grids just as we extended
the Gabor-response representation in Figure 6.
Figures 9, 10, and 11 use these graphical representations

to depict the best-fit models (in the all-data condition, with

Figure 7. Three images and their responses to Gabor filters. The magnitude of the average responses to different orientations reveals
differences in the image structure. Changing the filter frequencies reveals different information, as does computing the spatially localized
averages (2 � 2 grid shown). Color is only used for visualizationVall experiments and computer programs used grayscale images.

Figure 8. The average-Gabor-response representation can be used to represent regression functions. In this case, line length indicates
the magnitude of the coefficient applied to a filter and color indicates if the coefficient is positive or negative. An analogous representation
is used for regression on 2 � 2, 4 � 4, or 8 � 8 mean-Gabor-response regression.
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performance described in Table 3) for depth, openness,
and perspective. As previously described, each property
model is a collection of linear regression functions (9 for
depth, 6 for openness and 4 for perspective) and each
regression function is used to predict the property rating
for a set of scenes.8 The number of clusters in each model,
as well as the clusters’ regression functions and locations
in GIST feature space, were learned solely from the
training data. In the figures we display two visualizations
of each cluster: a visualization of the regression weights

Figure 9. The clusters in the depth (all scenes) CWM model. Top:
the regression functions for each cluster and a range of training
images whose predicted ratings are mostly (990%) determined by
each cluster. Bottom: the mean feature values for each cluster
and the training images nearest to each mean. Functions and
means are represented by lines that represent the orientation,
frequency, and location of the Gabor filters that comprise the GIST
features, magnitudes are represented by length, see text for more
detail. Color is only used for visualizationVall experiments and
computer programs used grayscale images.

Figure 10. The clusters in the openness (all scenes) CWM model. Top: the regression functions for each cluster and a range of training
images whose predicted ratings are mostly (990%) determined by each cluster. Bottom: the mean feature values for each cluster and the
training images nearest to each mean. Functions and means are represented by lines that represent the orientation, frequency, and
location of the Gabor filters that comprise the GIST features, magnitudes are represented by length, see text for more detail. Color is only
used for visualizationVall experiments and computer programs used grayscale images.

Journal of Vision (2010) 10(1):2, 1–25 Ross & Oliva 19



for each cluster, along with some example images and
their predicted ratings, and a visualization of the centers
(means) of each cluster, along with a sample of images
that are very close to those centers. All images shown in
the figures are drawn from the training data. The
regression images were chosen by first selecting the
images whose predicted perceptual ratings were at least
90% determined by that particular cluster’s regression
function, and then selecting a set that would cover the
widest range of ratings in that set. The ratings assigned to
the beginning and ending images in each set are displayed.
The images are displayed in color for visualization
purposes onlyVall experiments and models utilized
grayscale images.
The cluster regression weights and cluster centers are

also represented by displaying their values in GIST
feature space. As mentioned previously, the GIST repre-
sentation we used consisted of Gabor filter responses
covering 4 scales (low frequency to high frequency) and

8 orientations measured at R � R image locations. The
spatial scales are indicated by dividing each representation
into four boxes, each one containing the representation or
regression weights at one particular scale.
Observing the examples near the mean of each cluster

reveal that many clusters are centered on a particular
semantic scene class: open landscapes, urban skylines,
mountains, streets, etc. This is not surprising given that the
GIST features have been previously used to distinguish
between these types of categories (Oliva & Torralba,
2001), therefore we would expect that there is a strong
tendency for the nearest neighbors of any point in GIST-
feature space to contain semantically similar scenes. On
the other hand, the regression examples, which are drawn
from the entire region of GIST feature space dominated
by a particular cluster, show more diversity. For instance
there are cases in all three models in which the same
regression function is applied to both natural and urban
scenes that have some structural similarities. For example,

Figure 11. The clusters in the perspective (all scenes) CWM model. Top: the regression functions for each cluster and a range of training
images whose predicted ratings are mostly (990%) determined by each cluster. Bottom: the mean feature values for each cluster and the
training images nearest to each mean. Functions and means are represented by lines that represent the orientation, frequency, and
location of the Gabor filters that comprise the GIST features, magnitudes are represented by length, see text for more detail. Color is only
used for visualizationVall experiments and computer programs used grayscale images.
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cluster 9 in the depth model is centered on images of the
front of buildings, but when we look at the regression
examples for that cluster they also include natural images
in which a line of trees provide important depth cues. This
generalization can occur because there are structural
similarities that transcend the semantic categories.
The influence of context on the regression functions is

the most important feature of these models. In each model
there are Gabor frequencies and locations that are
associated with one end of the rating scale in some
clusters and the opposite end in others. For example, in
the depth ratings (Figure 9), some spatial frequencies at
the top of the image are associated with “near” in cluster 4
and “far” in cluster 5. If we look at the regression
examples, cluster 4 mostly describes depth of scenes with
buildings, so we would expect frequency content at the
top of the image to be associated with a nearby building
that is blocking the sky. On the other hand, cluster 5 is
associated with landscape scenes and frequency content at
the top of these images may be associated with distant
cloudbanks or mountains which indicate greater depth.
Similar context-dependent effects can be observed in the
models for openness and perspective (Figures 10 and 11).
The openness regression functions (Figure 10) also

reveal a variety of image cluster-specific representations.
For instance, clusters 1 and 3 cover very open scenes
(highways, open ocean views, fields) centered on a
mixture of natural and urban images. These context-
independent clusters are estimated with a mix of high and
low-spatial-resolution weights. Structures that are diag-
nostic of a semantic category (tall front surfaces of
buildings for urban scenes, and oblique surfaces of
mountainous natural landscapes), are represented by
class-specific clusters (clusters 2 and 6, respectively).
Finally, the perspective regression functions (Figure 11)
demonstrate relatively little spatial structure (given that its
optimal spatial resolution is 2 � 2), but show global
feature orientation sensitivity. This makes sense because
judging the perspective of the scene is a global estimation
that requires detecting the orientation of lines that stretch
across the image. Some clusters are especially sensitive to
oriented lines in the bottom half of the image, which helps
them detect the orientation of streets, paths, and the
ground-object boundaries. For instance, in cluster 1, most
diagonal filters are associated with perpendicular views
(consider the lines of a street extending away from an
observer) and horizontal and vertical filters are associated
with parallel views.

General discussion

Inference of useful scene layout properties from image-
based features has long been a focus of psychological
(Gibson, 1986) and computer vision (Marr, 1982)
research. Because precise physical models of real-world

scenes are inaccessible or computationally intractable,
determining the relationship between two-dimensional
image information and perceptual properties representing
the “shape of the scene” is relevant for both psychological
and computer vision research. Even a system designed to
produce a detailed scene reconstruction can benefit from a
global system that provides holistic scene layout informa-
tion. Holistic layout knowledge can act as a set of prior
probabilities during the detailed reconstruction process,
providing knowledge that can resolve local scene percep-
tion ambiguities. Here, we show that human observers are
very consistent in estimating the dominant depth and
openness of natural and urban scene pictures, but their
perceptual estimation of perspective is more variable. By
using an algorithm that successfully translates images
from pixels into a higher-order feature space (spatial-
envelope coordinates, Oliva & Torralba, 2001), we
observe that human judgments of the three layout proper-
ties can be reliably predicted, particularly for estimating
the dominant depth or scale of a scene. Furthermore, we
show that the model’s predictions are general and not
specific to the observers it was trained on. Importantly, we
discovered that the optimal spatial resolutions for deter-
mining layout in this higher-order space vary systemati-
cally with the content of the space (being natural or
manufactured), and the type of layout: openness is best
estimated at a high spatial resolution, dominant depth is
best estimated at a medium spatial resolution, and
perspective is best estimated at a low spatial resolution.
The similarity between the CWMs operating on GIST

features and human perceptual layout estimation suggests
that the structure of these models may be well suited to
encoding structural scene priors. By encoding spatial
information that is correlated with the three-dimensional
extent of the scene, these models can act as “context” to
guide navigation tasks (similar to other works which have
used global features context to predict object search and
eye movements, Ehinger, Hidalgo-Sotelo, Torralba, &
Oliva, 2009; Torralba, Oliva, Castelhano, & Henderson,
2006).
The algorithm can also form the pre-processing stage of

a search or clustering algorithm that retrieves or groups
images by their three-dimensional physical layout sim-
ilarity rather than by image features or semantic catego-
ries. There are a number of possible uses for this
perceptual-layout-based search, including applications in
visual robot navigation. Confronted with a new environ-
ment, a robot with a large database of past navigational
experiences could use a global physical layout estimate to
retrieve those examples most likely to apply to the current
situation. Given the difficulty of extracting detailed layout,
a robust global estimate combined with past experience
could serve as a useful prior for algorithms attempting a
detailed three-dimensional scene reconstruction. Many
tasks, such as picking up an object or traveling towards
a building, only require detailed geometric knowledge of
part of a scene, while the rest is represented by global
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properties. Exploring such mixed-resolution representa-
tions could be an interesting topic of future research.
Additionally, a model based on the global physical

layout space described in this paper would be able to
inform and guide the resolution of local metric cues of
depth, perspective, distance, to built more robust spatial
estimators. Years of psychophysical studies have shown
that human observers may use a variety of local two-
dimensional image cues to infer metric information about
the scale of a space, its dominant depth or perspective.
Recent work in scene recognition has also shown that
global properties of layout may be resolved with less
exposure time than the semantic category of the scene
(Greene & Oliva, 2009b; Joubert et al., 2007), are subject
to aftereffects (Greene & Oliva, in press), and may
constrain the understanding of the meaning of the scene
at the beginning of visual processing (Greene & Oliva,
2009a). A promising avenue would be to merge both
global and local cues of scene shape to realize a more
complete and accurate representation of three-dimensional
natural spaces.

Appendix A

As we discussed in the main body of the paper,
increasing the spatial resolution inevitably decreases the
precision of frequency information in our PCA represen-
tation. Therefore, one might suspect that these results
indicate the amount of frequency information necessary to
solve these perceptual problems, rather than the optimal
spatial resolution. In that case, we would expect perfor-
mance to decline when the spatial resolution is increased
beyond the optimal level because after that there would be
too little frequency information present to perform the
task. Small declines in performance do occur in most
categories once 16 � 16 resolution is reached, but in all
cases 16 � 16 performance is better than 1 � 1 perfor-

mance, which indicates that the main requirement for
optimal performance is achieving adequate spatial resolution
(Table A1).
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Footnotes

1
The code is available at http://people.csail.mit.edu/

torralba/code/spatialenvelope/.
2
Note that this cross validation is completely separate

from the cross-validation procedure used to chooseN in the
previous section, which only involves the training data.

3
Torralba and Oliva (2002) and Vailaya et al. (1998)

both demonstrated greater than 90% accuracy in automati-
cally classifying images as natural or urban. Our own
experiments indicate that for our database, which contains
a significant number of images whose natural/urban
statuses are ambiguous, the principal components of GIST
features at resolutions 1 � 1, 2 � 2, 4 � 4, or 8 � 8 and a
linear classifier can produce greater than 83% accuracy on
this task.

4
We used 24 components rather than 25 because an

early version of the model used a multi-resolution
implementation which made it desirable to use a multiple
of 2 and 3 as the number of principal components.

5
The “curse of dimensionality” is a universal problem

in machine learningVsee Bishop (2006) or any other
textbook.

6
A one-sided test is appropriate because we are only

interested in the case where a higher resolution model
outperforms lower resolution models (for information on
one-sided tests, see Myers & Well, 2003). For the
resolutions we test, a high-resolution GIST grid can

1 � 1 2 � 2 4 � 4 8 � 8 16 � 16

Depth (All) 0.745 0.644 0.607 0.606 0.616
Depth (Natural) 0.828 0.726 0.700 0.675 0.674
Depth (Urban) 0.647 0.503 0.466 0.461 0.476
Openness (All) 1.422 0.914 0.876 0.835 0.843
Openness
(Natural)

1.444 0.987 0.932 0.917 0.930

Openness (Urban) 1.288 0.751 0.707 0.716 0.703
Perspective (All) 2.339 1.958 2.016 2.035 2.037
Perspective
(Natural)

1.994 1.943 1.941 1.988 1.942

Perspective
(Urban)

2.148 1.815 1.769 1.804 1.781

Table A1. The average mean squared error across the five-fold
cross validation for each property, data set, and spatial resolution.
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always be transformed into any lower resolution GIST
grid by averaging. Therefore, there always exists a high-
resolution model that at least equals the performance of
the best model at any lower resolution.

7
Because the PCA representation captures a smaller

percentage of the full GIST representation as the resolution
increases, it is possible that this resolution analysis is
underestimating the potential performance using 8 � 8 or
16 � 16 resolutions. However, using the full GIST
representations in those cases is impractical because it
would exponentially increase the number of training
examples required and because the CWM algorithms
suffer from numerical precision problems if the feature
space is extremely high dimensional.

8
The number of clusters in each model do not

necessarily match the values in Table 2 because the
number of clusters is chosen during training and can vary
between runs of the training code or due to changes in the
training data.

References

Baddeley, R. (1997). The correlational structure of natural
images and the calibration of spatial representations.
Cognitive Science, 21, 351–372.

Barrow, H. G., & Tenenbaum, J. M. (1981). Interpreting
line drawings as three-dimensional surfaces. Artificial
Intelligence, 17, 75–116.

Bishop, C. M. (2006). Pattern recognition and machine
learning. New York: Springer.

Burge, J., Fowlkes, C. C., & Banks, M. (submitted for
publication). Natural scene statistics predict the
influence of the figure-ground cue of convexity on
human depth perception. Journal of Neuroscience.

Coughlan, J. M., & Yuille, A. L. (1999). Manhattan world:
Compass direction from a single image by Bayesian
inference. In Proceedings of the IEEE International
Conference on Computer Vision, 941–947.

Creem-Regehr, S. H., Gooch, A. A., Sahm, C. S., &
Thompson, W. B. (2004). Perceiving virtual geo-
graphical slant: Action influences perception. Journal
of Experimental Psychology: Human Perception and
Performance, 30, 811–821. [PubMed]

Criminisi, A., Reid, I., & Zisserman, A. (2000). Single
view metrology. International Journal of Computer
Vision, 40, 123–148.

Divvala, S. K., Efros, A. A., & Hebert, M. (2008). Can
similar scenes help surface layout estimation? IEEE
Workshop on Internet Vision at CVPR ’08.

Ehinger, K., Hidalgo-Sotelo, B., Torralba, A., & Oliva, A.
(2009). Modeling search for people in 900 scenes: A

combined source model of eye guidance. Visual
Cognition, 17, 945–978.

Fei-Fei, L., & Perona, P. (2005). A Bayesian hierar-
chical model for learning natural scene categories.
In Proceedings of IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, 2,
524–531.

Field, D. J. (1987). Relations between the statistics of
natural images and the response properties of cortical
cells. Journal of the Optical Society of America A,
Optics and Image Science, 4, 2379–2394. [PubMed]

Fortenbaugh, F. C., Hicks, J. C., Hao, L., & Turano, K.
(2007). Losing sight of the bigger picture: Peripheral
field loss compresses representations of space. Vision
Research, 47, 2506–2520. [PubMed]

Gershenfeld, N. (1999). The nature of mathematical
modeling. Cambridge: Cambridge University Press.

Gibson, J. (1986). The ecological approach to visual
perception. Hillsdale: Lawrence Erlbaum Associates.

Girshick, A., Burge, J., Erlikhman, G., & Banks, M.
(2008). Prior expectations in slant perception: Has the
visual system internalized natural scene geometry?
[Abstract]. Journal of Vision, 8(6):77, 77a, http://
journalofvision.org/8/6/77/, doi:10.1167/8.6.77.

Gosselin, F., & Schyns, P. G. (2001). Bubbles: A technique
to reveal the use of information in recognition tasks.
Vision Research, 41, 2261–2271. [PubMed]

Greene, M. R., & Oliva, A. (2009a). Recognition of
natural scenes from global properties: Seeing the
forest without representing the trees. Cognitive
Psychology, 58, 137–176. [PubMed] [Article]

Greene, M. R., & Oliva, A. (2009b). The briefest of
glances: The time course of natural scene under-
standing. Psychological Science, 20, 464–472.
[PubMed] [Article]

Greene,M. R., &Oliva, A. (in press). High-level aftereffects
to global scene property. Journal of Experimental
Psychology: Human Perception and Performance.

Heaps, C., & Handel, C. H. (1999). Similarity and
features of natural textures. Journal of Experimental
Psychology: Human Perception and Performance, 25,
299–320.

Heeger, D., & Bergen, J. (1995). Pyramid-based texture
analysis/synthesis. In Proceedings ACM SIGGRAPH.

Held, R., & Banks, M. (2008). Perceived size is affected
by blur and accommodation [Abstract]. Journal of
Vision, 8(6):442, 442a, http://journalofvision.org/8/6/
442/, doi:10.1167/8.6.442.

Hoeim, D., Efros, A., & Hebert, M. (2007). Recovering
surface layout from an image. International Journal
of Computer Vision, 75, 151–172.

Journal of Vision (2010) 10(1):2, 1–25 Ross & Oliva 23

http://www.ncbi.nlm.nih.gov/pubmed/15462622?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=11
http://www.ncbi.nlm.nih.gov/pubmed/3430225?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=81
http://www.ncbi.nlm.nih.gov/pubmed/17692884?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=3
http://journalofvision.org/8/6/77/
http://www.ncbi.nlm.nih.gov/pubmed/11448718?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=4
http://www.ncbi.nlm.nih.gov/pubmed/18762289?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=2
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759758/?tool=pubmed
http://www.ncbi.nlm.nih.gov/pubmed/19399976?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2742770/?tool=pubmed
http://journalofvision.org/8/6/442/


Horn, B. K. P., & Brooks, M. J. (1989). Shape from
shading. Cambridge: The MIT Press.

Howe, C. Q., & Purves, D. (2005). Natural-scene
geometry predicts the perception of angles and line
orientation. Proceedings of the National Academy of
Sciences, 102, 1228–1233. [PubMed] [Article]

Joubert, O. R., Rousselet, G. A., Fize, D., & Fabre-
Thorpe, M. (2007). Processing scene context: Fast
categorization and object interference. Vision
Research, 47, 3286–3297. [PubMed]

Magee, M. J., & Aggarwal, J. K. (1984). Determining
vanishing points from perspective images. Computer
Vision, Graphics, and Image Processing, 26, 256–267.

Marr, D. (1982). Vision. New York: W.H. Freeman and
Company.

McCotter, M., Gosselin, F., Sowden, P., & Schyns, P.
(2005). The use of visual information in natural
scenes. Visual Cognition, 12, 938–953.

Myers, J. L., & Well, A. D. (2003). Research design and
statistical analysis. Mahwah, NJ: Lawrence Erlbaum
Associates.

Oliva, A., & Schyns, P. G. (1997). Coarse blobs or fine
edges? Evidence that information diagnosticity
changes the perception of complex visual stimuli.
Cognitive Psychology, 34, 72–107. [PubMed]

Oliva, A., & Torralba, A. (2001). Modeling the shape of
the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42, 145–175.

Oliva, A., & Torralba, A. (2002). Scene-centered descrip-
tion from spatial envelope properties. In H. Bulthoff,
S. W. Lee, T. Poggio, & C. Wallraven (Eds.), Lecture
notes in computer science series: Proceedings of the
second international workshop on biologically moti-
vated computer vision (pp. 263–272). Tuebingen:
Springer-Verlag.

Oliva, A., & Torralba, A. (2006). Building the gist of a
scene: The role of global image features in recog-
nition. Progress in Brain Research: Visual percep-
tion, 155, 23–36. [PubMed]

Palmer, S. E. (1999). Vision science: Photons to phenom-
enology. Cambridge: The MIT Press.

Pentland, A. P. (1984). Fractal-based description of
natural scenes. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 6, 661–674.

Portilla, J., & Simoncelli, E. P. (2000). A parametric
texture model based on joint statistics of complex
wavelet coefficients. International Journal of Com-
puter Vision, 40, 49–71.

Proffitt, D., Bhalla, M., Gossweiler, R., & Midgett, J.
(1995). Perceiving geographical slant. Psychonomic
Bulletin & Review, 2, 409–428.

Renninger, L. W., & Malik, J. (2004). When is scene
identification just texture recognition? Vision
Research, 44, 2301–2311. [PubMed]

Rogowitz, B., Frese, T., Smith, J., Bouman, C., & Kalin, E.
(1998). Perceptual image similarity experiments. In
Human Vision and Electronic Imaging III, Proceed-
ings of the SPIE.

Sanocki, T. (2003). Representation and perception of
spatial layout. Cognitive Psychology, 47, 43–86.

Sanocki, T., & Epstein, W. (1997). Priming spatial layout
of scenes. Psychological Science, 8, 374–378.

Sanocki, T., & Sulman, N. (2009). Priming of simple
and complex scene layout: Rapid function from the
intermediate level. Journal of Experimental Psy-
chology: Human Perception and Performance, 35,
735–749. [PubMed]

Saxena, A., Sun, M., & Ng, A. Y. (2009). Make3D:
Learning 3D scene structure from a single still image.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31, 824–840. [PubMed]

Schyns, P. G., & Oliva, A. (1994). From blobs to
boundary edges: Evidence for time- and spatial-
scale-dependent scene recognition. Psychological
Science, 5, 195–200.

Schyns, P. G., & Oliva, A. (1999). Dr. Angry and Mr.
Smile: When categorization flexibly modifies the
perception of faces in rapid visual presentations.
Cognition, 69, 243–265.

Super, B. J., & Bovik, A. C. (1995). Planar surface
orientation from texture spatial frequencies. Pattern
Recognition, 28, 728–743.

Torralba, A. (2009). How many pixels make an image?
Visual Neuroscience, 26, 123–131. [PubMed]

Torralba, A., & Oliva, A. (2002). Depth estimation from
image structure. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 24, 1226–1238.

Torralba, A., & Oliva, A. (2003). Statistics of natural
image categories. Network: Computation in Neural
Systems, 14, 391–412.

Torralba, A., Oliva, A., Castelhano, M., &Henderson, J. M.
(2006). Contextual guidance of eye movements and
attention in real-world scenes: The role of global
features in object search. Psychological Review, 113,
766–786. [PubMed]

Vailaya, A., Jain, A., & Zhang, H. J. (1998). On image
classification: City images vs. landscapes. Pattern
Recognition, 31, 1921–1935.

Vogel, J., & Schiele, B. (2007). Semantic model of natural
scenes for content-based image retrieval. Interna-
tional Journal of Computer Vision, 72, 2007.

Journal of Vision (2010) 10(1):2, 1–25 Ross & Oliva 24

http://www.ncbi.nlm.nih.gov/pubmed/15657143?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=3
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC544621/?tool=pubmed
http://www.ncbi.nlm.nih.gov/pubmed/17967472?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=2
http://www.ncbi.nlm.nih.gov/pubmed/9325010?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=15
http://www.ncbi.nlm.nih.gov/pubmed/17027377?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=65
http://www.ncbi.nlm.nih.gov/pubmed/15208015?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=4
http://www.ncbi.nlm.nih.gov/pubmed/19485688?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=1
http://www.ncbi.nlm.nih.gov/pubmed/19299858?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=43
http://www.ncbi.nlm.nih.gov/pubmed/19216820?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=9
http://www.ncbi.nlm.nih.gov/pubmed/17014302?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=11


Watt, S. J., Akeley, K., Ernst, M. O., & Banks, M. S.
(2005). Focus cues affect perceived depth. Journal of
Vision, 5(10):7, 834–862, http://journalofvision.org/5/
10/7/, doi:10.1167/5.10.7. [PubMed] [Article]

Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving dis-
tance accurately by a directional process of inte-
grating ground information. Nature, 428, 73–77.
[PubMed]

Yang, Z., & Purves, D. (2003). Image/source statistics of
surfaces in natural scenes. Network: Computation in
Neural Systems, 14, 371–39. [PubMed]

Yu, S. X., Zhang, H., & Malik, J. (2008). Inferring spatial
layout from a single image via depth-ordered group-
ing. Computer Vision and Pattern Recognition Work-
shops, 2008. CVPRW ’08 (pp. 1–7).

Journal of Vision (2010) 10(1):2, 1–25 Ross & Oliva 25

http://www.ncbi.nlm.nih.gov/pubmed/16441189?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=19
http://journalofvision.org/5/10/7/
http://www.ncbi.nlm.nih.gov/pubmed/14999282?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=774
http://www.ncbi.nlm.nih.gov/pubmed/12938763?itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_RVDocSum&ordinalpos=4

