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Abstract

While long term human visual memory can store a remarkable amount of visual
information, it tends to degrade over time. Recent works have shown that image
memorability is an intrinsic property of an image that can be reliably estimated
using state-of-the-art image features and machine learning algorithms. However,
the class of features and image information that is forgotten has not been explored
yet. In this work, we propose a probabilistic framework that models how and
which local regions from an image may be forgotten using a data-driven approach
that combines local and global images features. The model automatically discov-
ers memorability maps of individual images without any human annotation. We
incorporate multiple image region attributes in our algorithm, leading to improved
memorability prediction of images as compared to previous works.

1 Introduction

Human long-term memory can store a remarkable amount of visual information and remember thou-
sands of different pictures even after seeing each of them only once [25, 1]. However, it appears to
be the fate of visual memories that they degrade [13, 30]. While most of the work in visual cognition
has examined how people forget for general classes of visual or verbal stimuli [30], little work has
looked at which image information is forgotten and which is retained. Does all visual information
fade alike? Are there some features, image regions or objects that are forgotten more easily than
others? Inspired by work in visual cognition showing that humans selectively forget some objects
and regions from an image while retaining others [22], we propose a novel probabilistic framework
for modeling image memorability, based on the fading of local image information.

Recent work on image memorability [6, 7, 12] has shown that there are large differences between
the memorabilities of different images, and these differences are consistent across context and ob-
servers, suggesting that memory differences are intrinsic to the images themselves. Using machine
learning tools such as support vector regression and a fully annotated dataset of images with hu-
man memorability scores, Isola et al [7] show that an automatic image ranking algorithm matches
individual image memory scores quite well: with dynamic scenes with people interacting as most
memorable, static indoor environments and human-scale objects as somewhat less memorable, and
outdoor vistas as forgettable. In addition, using manual annotation, Isola et al. quantified the contri-
bution of segmented regions to the image memorability score, creating a memorability map for each
individual image that identifies objects that are correlated with high or low memorability scores.
However, this previous work did not attempt to discover in an automatic fashion which part of the
image is memorable and which regions are forgettable.

In this paper, we introduce a novel framework for predicting image memorability that is able to
account for how memorability of image regions and different types of features fade over time, offer-
ing memorability maps that are more interpretable than [7]. The current work offers three original
contributions: (1) a probabilistic model that simulates the forgetting local image regions, (2) the
automatic discovery of memorability maps of individual images that reveal which regions are mem-
orable/forgettable, and (3) an improved overall image memorability prediction from [7], using an
automatic, data-driven approach combining local and global images features.
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Figure 1: Overview of our probabilistic framework. This figure illustrates a possible external or
‘observed’ representation of an image. The conversion to an internal representation in memory can
be thought of as a noisy process where some elements of the image are changed probabilistically as
described by α and β (Sec. 3.1). The image on the right illustrates a possible internal representation:
the green and blue regions remain unchanged, while the red region is forgotten and the pink region
is hallucinated. Note that the internal representation cannot be observed and is only shown here for
illustrating the framework.

2 Related Work

Large scale visual memory experiments [26, 25, 1, 13, 14, 28] have shown that humans can re-
member specific images they have seen among thousands of images, hours to days later, even after
being exposed to each picture only once. In addition, humans seem to have a massive capacity in
long term memory to store specific details about these images, like remembering whether the glass
of orange juice they saw thousands of images earlier was full or half full [1] or which specific door
picture they saw after being exposed to hundreds of pictures of doors [28].

However, not all images are equally memorable as shown by the Memory Game experiment de-
scribed in [7, 12], and importantly, not all kinds of local information are equally retained from an
image: on average, observers will more likely remember visual details attached to objects that have
a specific semantic label or a distinctive interpretation (for example observers will remember differ-
ent types of cars by tagging each car with a different brand name, but would more likely confuse
different types of apples, which only differ by their color [14]). This suggests that different features,
objects and regions in an image may have themselves different memorability status: indeed, works
by Isola et al [7, 6] have shown that different individual features, objects, local regions and attributes
are correlated with image that are highly memorable or forgettable. For instance, indoor spaces,
pictures containing people, particularly if their face is visible, close up views on objects, animals,
are more memorable than buildings, pictures of natural landscapes, and natural surfaces in general
(like mountains, grass, field). However, to date, there is no work which has attempted to predict
which local information from an image is memorable or forgettable, in an automatic manner.

3 Modeling Memorability Using Image Regions

We propose to predict memorability using a noisy memory process of encoding images in our mem-
ory, illustrated in Fig. 1. In our setting, an image consists of different types of image regions and
features. After a delay between the first and second presentation of an image, people are likely to
remember some image regions and objects more than others. For example, as shown in [7], people
and close up views on objects tend to be more memorable than natural objects and regions of land-
scapes, suggesting for instance that an image region containing a person is less likely to be forgotten
than an image region containing a tree. It is well established that stored visual information decays
over time [30, 31, 14], which can be represented in a model by a novel image vector with missing
global and local information. We postulate that the farther the stored representation of the image is
from its veridical representation, the less likely it is to be remembered.

Here, we propose to model this noisy memorability process in a probabilistic framework. We assume
that the representation of an image is composed of image regions where different regions of an
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image correspond to different sets of objects. These regions have different probabilities of being
forgotten and some regions have a probability of being imagined or hallucinated. We postulate that
the likelihood of an image to be remembered depends on the distance between the initial image
representation and its internal degraded version. An image with a larger distance to the internal
representation is more likely to be forgotten, thereby the image should have a lower memorability
score. In our algorithm, we model this probabilistic process and show its effectiveness at predicting
image memorability and at producing interpretable memorability maps.

3.1 Formulation

Given some image Ij , we define its representation vj and ṽj as the external and internal represen-
tation of the image respectively. The external representation refers to the original image which is
observed, while internal representation refers to the noisy representation of the same image that is
stored in the observer’s memory. Assume that there are N types of regions or objects an image can
contain. We define vj ∈ {0, 1}N as a binary vector of size N containing a 1 at index n when the
corresponding region is present in image Ij and 0 otherwise. Similarly, the internal representation
consists of the same set of region types, but has different presence and absence values as memory is
noisy.

In this setting, one of two things can happen when the external representation of an image is ob-
served: (1) An image region that was shown is forgotten i.e. ṽj(i) = 0 when vj(i) = 1, where vj(i)
refers to the ith element of vj , or (2) An image region is hallucinated i.e. an image region that did
not exist in the image is believed to be present. We expect this to happen with different probabilities
for different types of image regions. Therefore, we define two probability vectors ~α, ~β ∈ [0, 1]N ,
where αi corresponds to the probability of region type i being forgotten while βi corresponds to the
probability of hallucinating a region of type i.

Using this representation, we define the distance between the internal and external representation as
Dj = D(vj , ṽj) = ||vj − ṽj ||1. Dj is inversely proportional to the memorability score of an image
sj ; the higher the distance of an image in the brain from its true representation, the less likely it is
to be remembered, i.e. when D increases, s decreases. Thus, we can compute the expected distance
E(Dj |vj) of an image as:

E(Dj |vj) =
N∑
i=1

α
vj(i)
i ∗ β1−vj(i)

i = vTj ~α+ (¬vj)T ~β (1)

This represents the expected number of modifications in v from 1 to 0 (α) or from 0 to 1 (β). Thus,
over all images, we can define the expected distance E(D|v) as

E(D|v) =

 vT1 ¬vT1
...

...
vTM ¬vTM

 · (~α~β
)
∝rank −~s (2)

where αi, βi ∈ [0, 1] and ∝rank represents that the proportionality is only related to the relative
ranking of the image memorability scores, andM is the total number of images. We do not explicitly
predict a memorability score, rather the ranking of scores between images.

The above equation represents a typical ordinal rank regression setting with additional constraints
on the learning parameters ~α and ~β. Since we are only interested in the rank, we can rescale the
learned parameters to lie between [0, 1], allowing us to use standard solvers such as SVM-Rank [9].
We note that ~β cannot be uniquely determined when considering ranking of images alone, and thus
we focus our attention on ~α for the rest of this paper.

Implementation details: To generate the region types automatically, we randomly sample rectan-
gular regions of arbitrary width and height from the training images. The regions can be overlapping
with each other. For each region, we compute a particular feature (described in Sec. 4.2), ensuring
the same dimension for all regions of different shapes and sizes (using Bag-of-Words like repre-
sentations). Then we perform k-means clustering to learn the dictionary of region types as cluster
centroids. The region type is determined by the closest cluster centroid. This method allows us to
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Figure 2: Illustration of multiple feature integration. Refer to Sec. 3.2 for details.

bypass the need for human annotation as done in [7]. The details of the dictionary size and feature
types used are provided in Sec. 4. As we sample overlapping regions, we only encode the pres-
ence of a region type by 1 or 0. There may be more than one sampled region that corresponds to a
particular region type.

We evaluate our algorithm on test images by applying a similar method as that on the train images.
In this case, we assume the dictionary of region types is given, and we simply assign the randomly
sampled image regions to region types, and use the learned parameters (~α, ~β) to compute a score.

3.2 Multiple Feature Integration

We incorporate multiple attributes of each region type such as color, texture and gradient in the form
of image features into our algorithm. Our method is illustrated in Fig. 2. For each attribute, we learn
a separate dictionary of region types. An image region is encoded using each feature dictionary
independently, and the ~α, ~β parameters are learned jointly in our learning algorithm. Subsequently,
we use each set of ~α and ~β for individual features to construct memorability maps that are later
combined using weighted pooling1 to produce an overall memorability map as shown in Fig. 2.
We demonstrate experimentally (Sec. 4) that multiple feature integration helps to improve both the
memorability score prediction and produce visually more consistent memorability maps.

4 Experiments

In this section, we describe the experimental setup and dataset used (Sec. 4.1), provide details about
the region attributes used in our experiments (Sec. 4.2) and describe the experimental results on
the image memorability dataset (Sec. 4.3). Experimental results show that our method outperforms
state-of-the-art methods on this dataset while providing automatic memorability maps of images that
compare favorably to when ground truth segmentation is used.

4.1 Setup

Dataset: We use the dataset proposed by Isola et al. [7] consisting of 2222 images from the SUN
dataset [32]. The images are fully annotated with segmented object regions and randomly sampled
from different scene categories. The images are cropped and resized to 256∗256 and a memorability
score corresponding to each image is provided. The memorability score is defined as the percentage
of correct detections by participants in their study.

Performance Evaluation: The performance is evaluated using Spearman’s rank correlation(ρ). We
evaluate our performance on 25 different training/testing splits of the data (same splits as [7]) with

1We weight the importance of individual features by summing the ~α corresponding to the particular feature.
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an equal number of images for training and testing (1111). The train splits are scored by one half
of the participants and the test splits are scored by the other half of the participants with a human
consistency of ρ = 0.75. This can be thought of as an upper bound in the performance of automatic
methods.

Algorithmic details: We sample 2000 patches per image with size 0.2∗0.2 to 0.7∗0.7 with random
aspect ratios in normalized image coordinates. To speed up convergence of SVM-Rank, we do not
include rank constraints for memorability scores that lie within 0.001 of each other. We find that
this does not affect the performance significantly. The hyperparameter of the SVM-Rank algorithm
is set using 5-fold cross-validation.

4.2 Image Region Attributes

Our goal is to choose various features as attributes that human likely use to represent image regions.
In this work, we consider six common attributes, namely gradient, color, texture, shape, saliency
and semantic meaning of the images. The attributes are extracted for each region and assigned to a
region type as described in Sec. 3.2 with a dictionary size of 1024 for each feature. For each of the
attributes, we describe our motivation and the method used for extraction.

Gradient: In human vision system, much evidence suggests that retinal ganglion cells and receptive
fields of cells in the visual cortex V1 are essentially gradient-based features. Furthermore, recent
success of many computer vision algorithms [2, 4] also demonstrated the power of such features. In
this work, we use the powerful Histogram of Oriented Gradients (HOG) features for our task. We
densely sample HOG [2] with a cell size of 2x2 at a grid spacing of 4 and learn a dictionary of size
256. The descriptors for a given image region are max-pooled at 2 spatial pyramid levels[15] using
Locality-Constrained Linear Coding (LLC) [29].

Color: Color is an important part of human vision. Color usually has large variations caused by
changes in illumination, shadows, etc, and these variations make the task of robust color description
difficult. Isola et al. [7] show that simple image color features, such as mean hue, saturation and
intensity, only exhibits very weak correlation with memorability. In contrast to this, color has been
shown to yield excellent results in combination with shape features for image classification [11].
Furthermore, many studies show that color names are actually linguistic labels that humans assign
to color spectrum space. In this paper, we use the color names feature [27] to better exploit the
color information. We densely sample the feature at multiple scales (12, 16, 24 and 32) with a grid
spacing of 4. Then we learn a dictionary of size 100 and apply LLC at 2-level spatial pyramid to
obtain the color descriptor for each region.

Texture: We interact with a variety of materials on a daily basis and we constantly assess their tex-
ture properties by visual means and tactile touch. To encode visual texture perception information,
we make use of the popular texture features – Local Binary Pattern [21] (LBP). We use a 2-level
spatial pyramid of non-uniform LBP descriptor.

Saliency: Image saliency is a biologically inspired model to capture the regions that attract more
visual attention and fixation focus [8]. Inspired by this, we extract a saliency value for each pixel
using natural statistics [10]. Then we perform average pooling at 3-level spatial pyramid to obtain
the descriptor for each region.

Shape: Humans constantly use geometric patterns to determine the similarity between visual enti-
ties, and the layout of shapes is directly relevant to mid level representations of the image. We denote
shape as a histogram of local Self-Similarity geometric pattens (SSIM [23]). We densely sample the
SSIM descriptor with a grid spacing of 4 and learn a dictionary of sie 256. The descriptors for a
given image region are max-pooled at 2 spatial pyramid levels using LLC.

Semantic: High-level semantic meaning contained in images has been shown to be strongly corre-
lated to image memorability [7], where manual annotation of object labels lead to great performance
in predicting image memorability. Here, our goal is to design a fully automatic approach to predict
image memorability, while still exploiting the semantic information. Thus, we use the automatic
Object Bank [17] feature to model the presence/absence of various objects in the images. We reduce
the feature dimension by using simple max pooling instead of spatial pyramid pooling.
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Table 1: Images are sorted into sets according to predictions made on the basis of a variety of
features (denoted by column headings). Average measured memorabilities are reported for each set.
e.g. The Top 20 row reports average measured memorability of the 20 highest predicted images. ρ
is the Spearman rank correlation between predictions and measurements.

Multiple global features [7] Our Global Our Local Our Full Model
Top 20 83% 84% 83% 85%

Top 100 80% 80% 80% 81%
Bottom 100 57% 56% 57% 55%
Bottom 20 55% 53% 54% 52%

ρ 0.46 0.48 0.45 0.50

Gradient (HOG)! α!

0.107!

0.909!

α!

0.048!

0.931!

Semantic (ObjectBank)!

Figure 3: Visualization of region types and corresponding α learned by our algorithm for gradient
and semantic features. The histograms represent the distribution of memorability scores correspond-
ing to the particular region type. We observe that high-scoring images tend to have a small value of
α while low scoring regions have a high value. This corresponds well with the proposed framework.
The color of the bounding boxes corresponds to the memorability score of the image shown (using
a jet color scheme).

4.3 Results

In this section, we evaluate the performance of our model with single and multiple features, and later
explore what the model has learned using memorability maps and the ranking of different types of
image regions.

Single + Multiple features: Fig. 6(a) and Tbl. 1 summarize the performance of our algorithm when
using single and multiple features. We compare our results with [7], and find that our algorithm
outperforms the automatic methods from [7] by 4%, and achieve comparable performance to when
ground truth annotation is used. This shows the effectiveness of our method at predicting memo-
rability. Further, we note that our model provides complementary information to global features as
it focuses on local image regions, increasing performance by 2% when combined with our global
features. We use the same set of attributes described in Sec. 4.2 as global features in our model.
The global features are learned independently using SVM-Rank and the predicted score is com-
bined with the predicted scores of our local model in SVM-Rank algorithm. Despite using the same
set of features, we are able to obtain performance gain suggesting that our algorithm is effective at
capturing local information in the image that was overlooked by the global features.

Memorability maps: We obtain memorability maps using max-pooling of the α from different
image regions. Fig. 4 shows the memorability maps obtained when using different features and
the overall memorability map when combining multiple features. Despite using no annotation, the
learned maps are similar to those obtained using ground truth objects and segments. From the
images shown, we observe that there is no single attribute that is always effective at producing
memorability maps, but the combination of the attributes leads to a significantly improved version.
We show additional results in Fig. 5.
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Figure 4: Visualization of the memorability maps obtained using different features, and the overall
memorability map. Additionally, we also include the memorability map obtained when using ground
truth segmentation on the right. We observe that it resembles our automatically generated maps.

Figure 5: Additional examples of memorability maps generated by our algorithm.

Image region types: In Fig. 3, we rank the image region types by their α value and visualize the
regions for the corresponding region type when α is close to 0 or 1. We observe that the region types
are consistent with our intuition of what is memorable from [7]. People often exist in image regions
with low α (i.e. low probability of being forgotten) while natural scenes and plain backgrounds are
observed in high α.

Further, we analyze the image region types by computing the standard deviation of the memorability
scores of the image regions that correspond to the particular type. Fig. 6(b) and 6(c) show the
results. The results are encouraging as regions that have high standard deviation tend to have a value
of α close to 0.5, which means they are not very informative for prediction. The same behavior is
observed for multiple feature types, and we find that the overall performance for individual features
(shown in Fig. 6(a)) corresponds well with the distance of the peaks in Fig. 6(b) from α = 0.5. This
suggests that our algorithm is effective at learning the regions with high and low probability of being
forgotten as proposed in our framework.

7



 

A
ve

ra
ge

 m
em

or
ab

ili
ty

 fo
r t

op
 N

 ra
nk

ed
 im

ag
es

 (%
)

Image rank (N)

75

80

85

70

100 200 300 400 500 600 700 800 900 10000

Other Human [0.75]

Isola et al. [0.46]

Objects and Scenes [0.50]
Our Final Model [0.50]

Global Only [0.48]

Local Only [0.45]
Gradient [0.40]

Shape [0.38]
Semantic [0.37]

Texture [0.34]
Color [0.29]

Saliency [0.28]

(a) Comparison of results averaged
across the 25 splits. Images are
ranked by predicted memorability
and plotted against the cumulative
average of measured memorability
scores.

Gradient)
Color)
Texture)
Shape)
Seman4c)
Saliency)

α=1"α=0" α=0.5"

St
an

da
rd

 D
ev

ia
tio

n"

(b) Standard deviation of memora-
bility score of all region types av-
eraged across the 25 splits for all
features, sorted by α. Graphs are
smoothed using a median filter.

α=1"α=0" α=0.5"

St
an

da
rd

 D
ev

ia
tio

n"

(c) Standard deviation of re-
gion types for Gradient feature
averaged across the 25 splits.
No smoothing is applied in this
case.

Figure 6: Plot of various results and analysis of our method. Fig. 6(b) and Fig. 6(c) are explained in
greater detail in Sec. 4.3

5 Conclusion

With the emergence of large scale photo collections and growing demands in storing, organizing,
interpreting, and summarizing large amount of digital information, it becomes essential to be able
to automatically annotate images on various novel dimensions that are interpretable to human users.
Recently, learning algorithms have been proposed to automatically interpret whether an image is
aesthetically pleasant or not [20, 3], memorable or forgettable [7, 6], and the role that other high
level photographic properties plays in image interpretation (photo quality [19], attractiveness [16],
composition [5, 18], and object importance [24]). Here, we propose a novel probabilistic frame-
work for automatically constructing memorability maps, discovering regions in the image that are
more likely to be memorable or forgettable by human observers. We demonstrate an effective yet
interpretable framework to model the process of forgetting. Future development of such automatic
algorithms of image memorability could have many exciting and far-reaching applications in com-
puter science, graphics, media, designs, gaming and entertainment industries in general.
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