



# Memorability of Image Regions

Jianxiong Xiao Antonio Torralba Aditya Khosla Aude Oliva









#### Goal:

Find memorability of image regions automatically without manual annotation

#### Method:

An *interpretable* model of memory as a noisy process composed of image regions

#### Advantages over manual annotation:

- Manual annotation of segments is expensive
- Granularity of annotations is not well defined

#### **Result:**

- Same prediction performance as using ground truth image segments!
- Automatically generated memorability maps that correspond well with manually annotated images



### Algorithm



**Expected distance** 

of all images: E(D|v) = 1 $\cdot \left( \vec{ec{eta}} 
ight) \propto_{rank} - ec{s}$ 

Ordinal Rank Regression with  $\alpha$ ,  $\beta \in [0, 1]!$ 

original image: image shown to observer

internal image: image retained in observers' brain

red: forgotten image region

blue, green: correctly retained image region in memory

pink: hallucinated image region

external representation (v): observed image in terms of image region types,  $v \in \{0, 1\}^n$ 

internal representation ( $\widetilde{v}$ ): image retrained in memory in terms of image region types,  $\tilde{v} \in \{0, 1\}^n$ 

 $\alpha_i$ : probability of forgetting image region

 $\beta_i$ : probability of hallucinating image region of type I

s: image memorability score

**D**: distance between internal and external representation i.e.  $\|\mathbf{v} - \mathbf{v}\|_1$ 

### **Image Region Attributes**



Gradient SIFT and HOG

Color

**Color Naming** 

Local binary pattern

Saliency Eye-tracking based Image self-similarity

Semantic Object Bank

## Experiments

#### Dataset: Image memorability dataset with 2222 images, ~80 scores/image, 25 train/test splits (images sampled from SUN database [Xiao et al, CVPR 2010])

Learning image region types: k-means clustering with 256 dictionary size

### Memorability Prediction



### Image Memorability Maps



### Analysis

Gradient

Saliency

Color

4 Texture

Shape

6 Semantic



### Additional Image Memorability Maps



 $\alpha$ =0.5

 $\alpha = 0$ 





### Conclusion

- We demonstrate an effective yet interpretable framework to automatically discover the memorability of image regions
- Future development of such automatic algorithms of image memorability could have many exciting and far-reaching applications in computer science, graphics, media, designs, gaming and entertainment industries in general